
CEMENT GROUT FOR TILE INSTALLATION

LATICRETE
GROUT MANUFACTURED IN NORTH AMERICA

This Environmental Product Declaration is provided by LATICRETE and contains a comprehensive environmental analysis of approximately 32 million kg of grout produced in North America.

This is a company-specific EPD commissioned by LATICRETE with the goal of further leveraging the business value associated with transparent reporting of its products' environmental impacts.

Established in 1956, LATICRETE International, Inc. is recognized for its manufacture and marketing of green flooring and façade materials, used in a variety of residential, commercial, and industrial applications.

For more information visit: www.laticrete.com
One LATICRETE Park North
Bethany, CT 06524-3423, USA

NORTH AMERICAN CEMENT GROUT FOR TILE INSTALLATION AS DEFINED BY ANSI A118.6 AND ANSI A118.7

According to ISO 14025

This declaration is an environmental product declaration (EPD) in accordance with ISO 14025. EPDs rely on Life Cycle Assessment (LCA) to provide information on a number of environmental impacts of products over their life cycle. Exclusions: EPDs do not indicate that any environmental or social performance benchmarks are met, and there may be impacts that they do not encompass. LCAs do not typically address

the site-specific environmental impacts of raw material extraction, nor are they meant to assess human health toxicity. EPDs can complement but cannot replace tools and certifications that are designed to address these impacts and/or set performance thresholds – e.g. Type 1 certifications, health assessments and declarations, environmental impact assessments, etc. Accuracy of Results: EPDs regularly rely on estimations of impacts, and the level of accuracy in estimation of effect differs for any particular product line and reported impact. Comparability: EPDs are not comparative assertions and are either not comparable or have limited comparability when they cover different life cycle stages, are based on different product category rules or are missing relevant environmental impacts. EPDs from different programs may not be comparable.

PROGRAM OPERATOR	UL Environment				
DECLARATION HOLDER	LATICRETE				
DECLARATION NUMBER	4787630163.101.1				
DECLARED PRODUCT	Cement grout for tile installation				
REFERENCE PCR	IBU Part A & B for Mineral Factory-n	nade Mortar, 07.2014, with UL addendum			
DATE OF ISSUE	November 29, 2016				
PERIOD OF VALIDITY	5 Years				
CONTENTS OF THE DECLARATION	Product definition and information ab Information about basic material and Description of the product's manufact Indication of product processing Information about the in-use condition Life cycle assessment results Testing results and verifications	the material's origin ture			
The PCR review was conducted	ed by:	PCR Review Panel Independent Expert Committee (SRV)			
This declaration was independ 14025 by Underwriters Labora INTERNAL	lently verified in accordance with ISO tories ☑ EXTERNAL	Wade Stout, UL Environment			
This life cycle assessment was accordance with ISO 14044 ar		Thomas Storin			
		Thomas P. Gloria, Industrial Ecology Consultants			

NORTH AMERICAN CEMENT GROUT FOR TILE INSTALLATION AS DEFINED BY ANSI A118.6 AND ANSI A118.7

According to ISO 14025

Product Description

Product Definition

The primary function of grout is to fill 'joints,' or the spaces between tiles. Grouting materials for tile installation are available in different forms, with cement-based grouts being most common.

Typically, cement grout for tile installation is a factory-prepared mixture of cement, aggregate, and other ingredients to produce a water-resistant, dense, uniformly-colored material. Cement grout for tile installation may be unsanded or sanded. Unsanded products utilize fine aggregates, are meant for joints 1/8" in width or less and/or are sometimes required for use with glass tile. Sanded products utilize graded sand as an aggregate and are meant for joints 1/16" (1.5mm) in width or greater.

Cement grouts for tile installation are characterized as standard or high performance. High performance products typically contain latex or other polymers to achieve improved characteristics such as increased bond strength, flexural strength, and lower water absorption for frost resistance.

Performance criteria for cement grout for tile installation are defined by ANSI A118.6 (standard) and A118.7 (high performance) and include linear shrinkage, water absorption, compressive strength, tensile strength and flexural strength.

Additionally a variety of cement grouts for tile installation may be classified by ISO 13007-3 Terms, Definitions and Specifications for Ceramic Tile Grouts and Adhesives.

As is the case with tile, cement grout is capable of withstanding a wide range of environmental stresses. Once cured, it is durable, fire- and heat-resistant, non-combustible, and non-sensitive to moisture.

Range of Applications

Cementitious grout products are commonly used in interior, exterior, commercial, institutional, and residential tile installations.

Product Standards

The products considered in this EPD meet or exceed the following technical specifications:

- ANSI A118.6 American National Standard Specifications for Standard Cement Grouts for Tile Installation
- ANSI A118.7 American National Standard Specifications for High Performance Cement Grouts for Tile Installation
- ISO Terms, Definitions and Specifications for Ceramic Tile Grouts and Adhesives

Fire performance: cement grout is non-flammable and non-combustible

No environmental burdens are expected for unforeseen flooding or mechanical destruction.

Information on leaching performance: No industry-wide data available as this EPD represents a broad range of cement grout products.

NORTH AMERICAN CEMENT GROUT FOR TILE INSTALLATION

AS DEFINED BY ANSI A118.6 AND ANSI A118.7

According to ISO 14025

Product Characteristics

Table 1: Construction data of cement grout included in this EPD

	Value	Unit			
Compressive strength See ANSI A118.6, ANSI A118.7 and ISO 130					
Adhesive shear strength	Industry-Wide Data Not Available*				
Water absorption	See ANSI A118.6, ANSI A118.7 and ISO 13007**				
Water vapor diffusion equivalent air layer thickness	ss Industry-Wide Data Not Available*				
Thermal conductivity	Industry-Wide Da	ta Not Available*			
Tensile bond strength	Industry-Wide Data Not Available*				
Flexural strength	See ANSI A118.6, ANSI A118.7 and ISO 13007**				

^{*}Industry-wide data are not available as this property is not relevant and/or not standardized for cement grout for tile installation. Consult with manufacturers and/or reference product-specific EPDs for additional information.

Material Content

Table 2: Average material content of the grout included in this EPD

Material	Mass [kg]
Grout	
Sand	0.47
White cement	0.12
Limestone	0.19
Grey cement	0.019
Calcium aluminate	0.14
Calcium formate	0.019
Other additives	0.052
Packaging	
Composite plastic and paper film	1.59E-04
Corrugate	1.23E-03
Paper	1.44E-04
Plastic film	9.59E-04
Wooden pallets	2.84E-04
Installation solution*	
Acrylate	0.026
Tap Water	0.22

^{*}Installation solution concentration based on production weighted average of manufacturer recommendations

^{**}This product specific EPD represents a broad range of cement grout products. Compressive strength, water absorption, and flexural strength can vary depending on the type of grout and its intended application. Consult with manufacturers and/or reference product-specific EPDs for additional information. For industry-wide construction data on these properties, reference product standards.

NORTH AMERICAN CEMENT GROUT FOR TILE INSTALLATION AS DEFINED BY ANSI A118.6 AND ANSI A118.7

According to ISO 14025

Grout Production

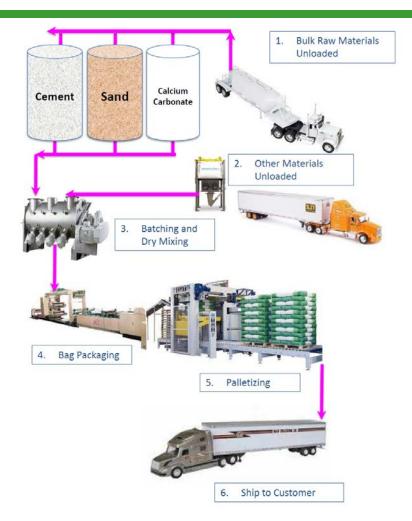


Figure 1: Process flow diagram for cement grout (for tile installation) manufacturing

Raw materials, including cement sand, calcium carbonate and other modifiers are unloaded and temporarily stored. When needed for production, materials are retrieved from storage, placed into specific batches based on formulation, dry-mixed, and then placed into packaging (usually bags). Packaged materials are then palletized, subjected to quality assurance inspections, placed into warehouse storage, and then shipped to customer warehouse or job site. LATICRETE is governed by federal and local requirements for dust control.

Production Waste

The vast majority of scrap and waste is recycled back into the product. Dust emissions during the mixing of the grout are collected through a dust collection system and recycled back into the production line.

LATICRETE offers varieties of products with pre- and post-consumer recycled content. This can contribute to overall building recycled content and help achieve compliance with recycled content targets in green building projects.

NORTH AMERICAN CEMENT GROUT FOR TILE INSTALLATION AS DEFINED BY ANSI A118.6 AND ANSI A118.7

According to ISO 14025

Additionally, high levels of responsibly recovered waste, including dust and powder, are commonly reincorporated into grout manufacturing. Waste reclamation in such processes is a vital component to minimizing waste and maximizing resources. In fact, most grout factories are so efficient at waste reclamation, they are effectively closed loop facilities. Reducing waste to zero and fully utilizing all inputs is paramount to efficient manufacturing.

Delivery and Installation of the Grout

Delivery Status

For purposes of this study, the average transport distance from manufacturing to construction site was assumed to be 500 miles (805 km) by truck. The cementitious grout included in this study is packaged in 25 lb (11.3 kg) plastic bags and 10 lb (4.5 kg wax-coated paper cartons.

Installation

Cement grout for tile installation is primarily installed by hand, with potential limited use of machines to mix the grout prior to application. Due to its material composition, grout is typically quite alkaline and, as such, eye and skin contact should be avoided, especially for prolonged periods. In addition, precautions should be taken to reduce dust emissions and inhalation during installation. The installation safety instructions of a given grout product should be followed during application. During installation, grout is applied at approximately 0.043 lb. / ft² (0.212 kg / m²) with around 4.5% of the total material lost as waste. Though some of this waste could be recycled, this scrap is modeled as being disposed of in a landfill.

Packaging

Primary packaging is a plastic bag, with secondary/tertiary packaging of shrink film and pallets. Packaging is assumed to be sent to landfill after installation. Landfill emissions from packaging are allocated to installation, while electricity generated from landfill gas (produced from the decomposition of bio-based packaging) is credited to the installation stage of the life cycle.

Use stage

The service life of grout depends on its care, but is expected to be equivalent to be equivalent to the service life of ceramic tile as the majority of tile installations keep the original grout throughout their lifespan. Ceramic tile service life is, in turn, assumed to be equivalent to the service life of the building in which the products are installed (TCNA, 2014). The level of maintenance depends on the use and desired appearance of the surface. A building's reference service life (RSL) is typically assumed to be 60 years. Grout (and ceramic tile) are thus assumed to have an RSL of 60 years.

The EPD must present results for the full 60 year RSL of the product, including the use stage impacts associated with that service life. Other scenarios such as the impacts for a 1-year service life or per m² of installed tile that are also of interest are included in the appendix.

Cleaning and Maintenance

Tile products should be cleaned routinely with warm tap water. For the purposes of this EPD, average maintenance is presented based on a mix of residential and commercial installations. The quantity of water required to clean 1 m² of

NORTH AMERICAN CEMENT GROUT FOR TILE INSTALLATION

AS DEFINED BY ANSI A118.6 AND ANSI A118.7

According to ISO 14025

installed tile was allocated by area between the grout and the tile. The amount of water allocated to the grout is reported in Table 4.

Table 3: Cleaning process

Level of Use	Cleaning Process	Cleaning Frequency	Consumption of Energy & Resources
Commercial /	Dust mop	Daily	None
Residential	Damp mop	36 times / year (Commercial)	

Table 4: Cleaning inputs

Input	Amount	Units
Tap water	0.011	L / m² / yr.

Prevention of Structural Damage

Tile should not be installed until any and all structural damage to the building has been adequately repaired and determined to be code compliant. Surfaces must be structurally sound, stable and rigid enough to support the grout, mortar, and tile, in addition to any other ancillary tile installation products.

Health Aspects during Usage

Inherently, cement grouts do not emit VOCs. For polymer-modified cement grouts, the South Coast Air Quality Management District (SCAQMD) Rule #1168 details VOC thresholds that are most commonly specified. Cement grouts for tile installation represented by this product specific EPD are typically in compliance. Some cement grout for tile installation also has built-in mold and mildew protection to complement tile's inherent resistance to mold and mildew growth.

End of Life

As grout is bound to the tile during application, it is typically disposed with the tile and as such, can be used in multiple applications—for example, clean fill material in land reclamation/contouring projects, base or substrate material for roadways and/or parking lots, replacement for raw materials used in cement or brick kilns, etc.

However, for purposes of this EPD, the analysis represents the most conservative approach and assumed that 100% of all tile removal waste is disposed of in a landfill.

Life Cycle Assessment

A full Life Cycle Assessment has been carried out according to ISO 14025 (ISO, 2011), ISO 14040 (ISO, 2009), and ISO 14044 (ISO, 2006), per the Product Category Rules (PCR) for Mineral Factor-made Mortar, as published by Institut Bauen und Umwelt e.V. (IBU, 2014), and the addendum as published by UL Environment (UL, 2016).

NORTH AMERICAN CEMENT GROUT FOR TILE INSTALLATION

AS DEFINED BY ANSI A118.6 AND ANSI A118.7

According to ISO 14025

Declared Unit Description

The declaration refers to the declared unit of 1 kg of product.

Table 5: Declared unit

	Value	Unit
Declared unit	1	kg
Gross density	1590	kg/m³
Conversion factor to 1 kg	1	_
Application rate	0.212	kg/m²

System Boundaries

The chosen system boundary for this study is cradle to gate with options and the life cycle stages considered are summarized in Table 6.

Table 6: Life cycle modules included in EPD

Pr	oducti	on	Instal	Installation Use stage End-of-Life				Use stage						Next product system		
Raw material supply (extraction, processing, recycled material)	Transport to manufacturer	Manufacturing	Transport to building site	Installation into building	Use / application	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction / demolition	Transport to EoL	Waste processing for reuse, recovery or recycling	Disposal	Reuse, recovery or recycling potential
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	B6	В7	C1	C2	С3	C4	D
Х	Х	Х	Х	Х	MND	Χ	MND	MND	MND	MND	MND	MND	Х	MND	Х	MND

X = declared module; MND = module not declared

Cut-off Criteria

No cut-off criteria were applied in this study. All reported data was incorporated and modeled using best available Life Cycle Inventory (LCI) data.

Background Data

For life cycle modeling of the considered products, the GaBi ts Software System for Life Cycle Engineering (thinkstep,

NORTH AMERICAN CEMENT GROUT FOR TILE INSTALLATION AS DEFINED BY ANSI A118.6 AND ANSI A118.7

According to ISO 14025

2016), developed by thinkstep AG, was used to model the product systems considered in this assessment. All relevant background datasets were sourced from the GaBi 2016 software database. The datasets from the GaBi database are documented in the online documentation (thinkstep, 2016).

Data Quality

A variety of tests and checks were performed throughout the project to ensure high quality of the completed LCA. Checks included an extensive review of project-specific LCA models as well as the background data used.

Temporal Coverage

Primary data collected from LATICRETE represents consecutive 12 month averages from July 2014 to July 2015. Background datasets are primarily based on data from the last 5 years (since 2011), with the exception of cement, which dates from 2004.

Technological Coverage

Data on material composition and manufacturing are primary data from LATICRETE. The raw material inputs, energy, waste, and emissions in the calculation for this LCA are based on annual total purchases divided by annual production during the reference year.

Geographical Coverage

This background LCA represents LATICRETE products produced in Mexico and the United States.

Manufacturing energy representative for each country was included; proxy datasets were used as needed for raw material inputs to address lack of data for a specific material or for a specific geographical region. These proxy datasets were chosen for their technological representativeness of the actual materials.

Allocation

Co-Product Allocation

No co-product allocation occurs in the product system.

Multi-Input Processes Allocation

No multi-input allocation occurs in the product system.

Reuse, Recycling, and Recovery Allocation

The cut-off allocation approach is adopted in the case of any post-consumer recycled content, which is assumed to enter the system burden-free. Only environmental impacts from the point of recovery and forward (e.g., collection, sorting, processing, etc.) are considered.

Product and packaging waste is modeled as being disposed in a landfill rather than incinerated or recycled. Plastic and other construction waste is assumed to be inert in landfills so no system expansion or allocation is necessary as landfill gas is not produced. In the case of landfill gas generated by the decay of bio-based packaging after installation, credit is given for capture or utilization of the landfill gas.

Scenarios and Additional Technical Information

Information relevant to the life cycle modules included in this study are summarized in the following tables.

Environment

NORTH AMERICAN CEMENT GROUT FOR TILE INSTALLATION

AS DEFINED BY ANSI A118.6 AND ANSI A118.7

According to ISO 14025

Table 7: Transport of 1kg of grout to the building site (A4)

	Value	Unit
Liters of fuel	0.0024*	L / (100 km.kg)
Transport distance	805	km
Capacity utilization (including empty runs)	78	%

^{*}Equivalent to a fuel consumption of 38.8 L / 100 km or a fuel economy of 6.0 mpg

Table 8: Installation of 1 kg of grout at the building site (A5)

	Value	Unit
Polymer (acrylate)	0.026	kg
Water consumption	2.2E-04	m³
Material loss (to landfill)	0.045	kg
Dust in the air	unknown	kg

Table 9: Maintenance of 1 kg of grout over RSL (B2)

	Value	Unit
Water consumption	3.1E-03	m ³ / RSL

Table 10: Reference service life (RSL)

	Value	Unit
Reference service life	60	а

Table 11: End of life (C1-C4)

	Value	Unit
Collected as mixed construction waste	1	kg
Landfilling	1	kg

Life Cycle Assessment – Results and Analysis

Results

Results for one kg installed grout over the service life of 60 years are presented below. Results for the grout required in 1 m² installed tile, as well as the impacts of a one-year service life, are included in the appendix.

- N 13 //			10.00	0-0
	ROMN	IENTAL	IMPA	cis

CML 2001 (A	CML 2001 (Apr 201 <u>3</u> 5)									
Parameter	Unit	A1-A3	A4	A5	B2	C2	C4			
GWP	kg CO₂ eq	5.02E-01	6.11E-02	1.20E-01	5.35E-02	2.43E-03	4.48E-02			
ODP	kg CFC-11 eq	7.07E-10	5.03E-13	2.76E-12	1.74E-11	2.00E-14	8.58E-13			
AP	kg SO ₂ eg	1.93E-03	2.26E-04	2.13E-04	1.65E-04	9.02E-06	1.94E-04			

NORTH AMERICAN CEMENT GROUT FOR TILE INSTALLATION AS DEFINED BY ANSI A118.6 AND ANSI A118.7

According to ISO 14025

EP	kg PO₄³ eq	1.72E-04	5.84E-05	4.04E-05	9.71E-05	2.33E-06	2.48E-05
POCP	kg C₂H₄ eq	1.50E-04	2.69E-05	3.21E-05	1.16E-05	1.07E-06	1.97E-05
ADPE	kg Sb eq	4.46E-07	9.14E-09	1.83E-07	1.17E-08	3.64E-10	1.72E-08
ADPF	MJ	5.75E+00	8.59E-01	2.58E+00	5.77E-01	3.42E-02	6.77E-01
TRACL2.1							

110 (012.1							
Parameter	Unit	A1-A3	A4	A5	B2	C2	C4
GWP	kg CO₂ eq	5.02E-01	6.11E-02	1.20E-01	5.35E-02	2.43E-03	4.48E-02
ODP	kg CFC-11 eq	8.61E-10	5.35E-13	2.93E-12	1.85E-11	2.13E-14	9.12E-13
AP	kg SO ₂ eq	1.96E-03	2.97E-04	2.33E-04	1.95E-04	1.18E-05	2.09E-04
EP	kg N eq	8.21E-05	2.76E-05	3.60E-05	1.18E-04	1.10E-06	1.16E-05
SFP	kg O₃ eq	2.86E-02	9.43E-03	3.40E-03	1.60E-03	3.76E-04	4.06E-03

GWP = Global warming potential; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophication potential; POCP = Formation potential of tropospheric ozone photochemical oxidants; ADPE = Abiotic depletion potential for non-fossil resources; ADPF = Abiotic depletion potential for fossil resources; SFP = Smog formation potential

RESOUR	RESOURCE USE										
Parameter	Unit	A1-A3	A4	A5	B2	C2	C4				
PERE	[MJ]	6.30E-01	1.43E-02	8.83E-02	5.56E-02	5.69E-04	4.40E-02				
PERM	[MJ]	-	1	ı	•	-	-				
PERT	[MJ]	6.30E-01	1.43E-02	8.83E-02	5.56E-02	5.69E-04	4.40E-02				
PENRE	[MJ]	6.26E+00	8.63E-01	2.66E+00	7.31E-01	3.44E-02	6.95E-01				
PENRM	[MJ]	-	-	-	-	-	-				
PENRT	[MJ]	6.26E+00	8.63E-01	2.66E+00	7.31E-01	3.44E-02	6.95E-01				
SM	[kg]	0.00E+00	1	ı	•	-	-				
RSF	[MJ]	7.00E-05	1	2.76E-05	6.68E-06	-	-				
NRSF	[MJ]	1.01E-03	-	3.07E-04	1.01E-04	-	-				
FW	[m³]	1.59E-03	1.75E-04	6.98E-04	3.45E-04	6.97E-06	1.07E-04				

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources; SM= Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water

OUTPUT	OUTPUT FLOWS AND WASTE CATEGORIES										
Parameter	Unit	A1-A3	A4	A5	B2	C2	C4				
HWD	[kg]	2.71E-06	1.10E-09	4.23E-07	2.02E-09	4.37E-11	1.33E-09				
NHWD	[kg]	2.02E-02	3.04E-05	5.45E-02	9.16E-03	1.21E-06	1.00E+00				
RWD	[kg]	1.80E-04	1.82E-06	3.32E-05	6.05E-05	7.23E-08	7.07E-06				
CRU	[kg]	-	-	-	-	-	-				
MFR	[kg]	-	ı	-	ı	-	-				
MER	[kg]	-	ı	-	ı	-	-				
EEE	[MJ]	-	ı	-	ı	-	-				
EET	[MJ]	-	-	-	-	-	-				

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EET = Exported thermal energy

Interpretation

The CML 2001 (Apr. 2013) and the TRACI 2.1 life cycle impact assessment methodologies differ due to their distinct modeling approaches. The results derived according to the CML 2001 (Apr. 2013) methodology find that, over the reference service life (60 years) of grout, the production of raw materials extraction and manufacturing represent the largest contributors in all impact categories considered. Installation also represents a smaller but relevant fraction of all categories as well, according to the CML 2001 (Apr. 2013) methodology. When TRACI 2.1 is instead applied, maintenance becomes a much more relevant stage of the grout's life cycle, dominating Eutrophication. However, as raw material production and upstream manufacturing are such large contributors to impacts in both impact assessment methods, the formulation of grout would be the most effective area to focus burden reduction efforts.

When considering a 1-year product life, as shown in the appendix, production of raw materials and manufacturing are by far the two largest contributors in all impact categories considered. The installation of grout is also a small but

NORTH AMERICAN CEMENT GROUT FOR TILE INSTALLATION AS DEFINED BY ANSI A118.6 AND ANSI A118.7

According to ISO 14025

relevant contributor to Eutrophication and Global Warming Potential.

These results do not constitute a comparative assertion, though architects and builders will be able to use them to compare LATICRETE's products with similar products presented in other EPDs that follow the same PCR.

References

- IBU. (2014). Product Category Rule Guidance Texts for building-related products and services: Part B: Requirements on the EPD for Mineral Factory-made Mortar. Institut Bauen und Umwelt e.V.
- ISO. (2006). ISO 14044: Environmental management Life cycle assessment Requirements and guidelines.
- ISO. (2009). ISO 14040: Environmental management Life cycle assessment principles and frameworks.
- ISO. (2011). ISO 14025: Environmental labels and declarations Type III environmental declarations principles and procedures.
- TCNA. (2014, October 24). Ceramic Tile EPD. UL.
- thinkstep. (2016). *GaBi LCA Database Documentation*. Retrieved from thinkstep AG: http://www.gabi-software.com/international/databases/gabi-databases/
- thinkstep. (2016). GaBi ts: Software system and database for life cycle engineering. Stuttgart, Echterdingen, Germany.
- UL. (2016, April). Product Category Rules for preparing an environmental product declaration (EPD) for PCR: IBU Product Category Rules Part B: Requirements on the EPD for Mineral factory-made mortar.

NORTH AMERICAN CEMENT GROUT FOR TILE INSTALLATION

AS DEFINED BY ANSI A118.6 AND ANSI A118.7

According to ISO 14025

Appendix - Additional Results

The following two sections tabulate environmental impacts of grout use under two additional metrics.

Results for 1 m² of installed grout over a 60-year service life

The impacts of the life cycle of 1 m² of installed grout over a 60-year service life are presented here.

ENVIRONMENTAL IMPACTS

CML 2001 (Apr 2015)

ONIL ZOOT (/ I	01 20 10)						
Parameter	Unit	A1-A3	A4	A5	B2	C2	C4
GWP	kg CO ₂ eq	1.06E-01	1.30E-02	2.54E-02	1.13E-02	5.16E-04	9.51E-03
ODP	kg CFC-11 eq	1.50E-10	1.07E-13	5.84E-13	3.69E-12	4.25E-15	1.82E-13
AP	kg SO₂ eq	4.10E-04	4.80E-05	4.51E-05	3.50E-05	1.91E-06	4.11E-05
EP	kg PO₄³ eq	3.64E-05	1.24E-05	8.56E-06	2.06E-05	4.93E-07	5.25E-06
POCP	kg C₂H₄ eq	3.18E-05	5.71E-06	6.81E-06	2.47E-06	2.28E-07	4.17E-06
ADPE	kg Sb eq	9.46E-08	1.94E-09	3.88E-08	2.47E-09	7.72E-11	3.64E-09
ADPF	MJ	1.22E+00	1.82E-01	5.47E-01	1.22E-01	7.25E-03	1.44E-01

TRACI 2.1

Parameter	Unit	A1-A3	A4	A5	B2	C2	C4
GWP	kg CO ₂ eq	1.06E-01	1.30E-02	2.54E-02	1.13E-02	5.16E-04	9.51E-03
ODP	kg CFC-11 eq	1.83E-10	1.13E-13	6.21E-13	3.92E-12	4.52E-15	1.93E-13
AP	kg SO₂ eq	4.15E-04	6.29E-05	4.94E-05	4.14E-05	2.51E-06	4.43E-05
EP	kg N eq	1.74E-05	5.84E-06	7.62E-06	2.51E-05	2.33E-07	2.46E-06
SP	kg O₃ eq	6.06E-03	2.00E-03	7.20E-04	3.39E-04	7.96E-05	8.62E-04

GWP = Global warming potential; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophication potential; POCP = Formation potential of tropospheric ozone photochemical oxidants; ADPE = Abiotic depletion potential for non-fossil resources; ADPF = Abiotic depletion potential for fossil resources; SFP = Smog formation potential

RESOURCE USE										
Parameter	Unit	A1-A3	A4	A5	B2	C2	C4			
PERE	[MJ]	1.34E-01	3.03E-03	1.87E-02	1.18E-02	1.21E-04	9.33E-03			
PERM	[MJ]	-	-	-	-	-	-			
PERT	[MJ]	1.34E-01	3.03E-03	1.87E-02	1.18E-02	1.21E-04	9.33E-03			
PENRE	[MJ]	1.33E+00	1.83E-01	5.65E-01	1.55E-01	7.29E-03	1.47E-01			
PENRM	[MJ]	-	-	ı	-	-	-			
PENRT	[MJ]	1.33E+00	1.83E-01	5.65E-01	1.55E-01	7.29E-03	1.47E-01			
SM	[kg]	0.00E+00	-	-	-	-	-			
RSF	[MJ]	1.48E-05	-	5.85E-06	1.42E-06	-	-			
NRSF	[MJ]	2.14E-04	-	6.50E-05	2.13E-05	-	-			
FW	[m³]	3.37E-04	3.71E-05	1.48E-04	7.31E-05	1.48E-06	2.27E-05			

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources; SM= Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water

OUTPUT	OUTPUT FLOWS AND WASTE CATEGORIES										
Parameter	Unit	A1-A3	A4	A5	B2	C2	C4				
HWD	[kg]	5.74E-07	2.32E-10	8.96E-08	4.28E-10	9.25E-12	2.82E-10				
NHWD	[kg]	4.28E-03	6.44E-06	1.16E-02	1.94E-03	2.56E-07	2.13E-01				
RWD	[kg]	3.82E-05	3.85E-07	7.04E-06	1.28E-05	1.53E-08	1.50E-06				
CRU	[kg]	1	1	-	-	-	-				
MFR	[kg]	1	1	-	-	-	-				
MER	[kg]	1	1	-	-	-	-				
EEE	[MJ]	1	1	-	-	-	-				
EET	[MJ]	-	-	-	-	-	-				

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EET = Exported thermal energy

NORTH AMERICAN CEMENT GROUT FOR TILE INSTALLATION

AS DEFINED BY ANSI A118.6 AND ANSI A118.7

According to ISO 14025

Results for 1 kg of installed grout over a 1 year service life

The impacts of the life cycle of 1 kg of installed grout over a 1-year service life are presented here.

ENVIRONMENTAL IMPACTS

Parameter	Unit	A1-A3	A4	A5	B2	C2	C4
GWP	kg CO₂ eq	5.02E-01	6.11E-02	1.20E-01	8.92E-04	2.43E-03	4.48E-02
ODP	kg CFC-11 eq	7.07E-10	5.03E-13	2.76E-12	2.90E-13	2.00E-14	8.58E-13
AP	kg SO ₂ eq	1.93E-03	2.26E-04	2.13E-04	2.75E-06	9.02E-06	1.94E-04
EP	kg PO ₄ 3 eq	1.72E-04	5.84E-05	4.04E-05	1.62E-06	2.33E-06	2.48E-05
POCP	kg C₂H₄ eq	1.50E-04	2.69E-05	3.21E-05	1.94E-07	1.07E-06	1.97E-05
ADPE	kg Sb eq	4.46E-07	9.14E-09	1.83E-07	1.94E-10	3.64E-10	1.72E-08
ADPF	MJ	5.75E+00	8.59E-01	2.58E+00	9.61E-03	3.42E-02	6.77E-01

110 (012.1							
Parameter	Unit	A1-A3	A4	A5	B2	C2	C4
GWP	kg CO ₂ eq	5.02E-01	6.11E-02	1.20E-01	8.92E-04	2.43E-03	4.48E-02
ODP	kg CFC-11 eq	8.61E-10	5.35E-13	2.93E-12	3.08E-13	2.13E-14	9.12E-13
AP	kg SO₂ eq	1.96E-03	2.97E-04	2.33E-04	3.25E-06	1.18E-05	2.09E-04
EP	kg N eq	8.21E-05	2.76E-05	3.60E-05	1.97E-06	1.10E-06	1.16E-05
SP	kg O₃ eq	2.86E-02	9.43E-03	3.40E-03	2.66E-05	3.76E-04	4.06E-03

GWP = Global warming potential; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophication potential; POCP = Formation potential of tropospheric ozone photochemical oxidants; ADPE = Abiotic depletion potential for non-fossil resources; ADPF = Abiotic depletion potential for fossil resources; SFP = Smog formation potential

RESOURCE USE										
Parameter	Unit	A1-A3	A4	A5	B2	C2	C4			
PERE	[MJ]	6.30E-01	1.43E-02	8.83E-02	9.26E-04	5.69E-04	4.40E-02			
PERM	[MJ]	-	-	-	-	-	-			
PERT	[MJ]	6.30E-01	1.43E-02	8.83E-02	9.26E-04	5.69E-04	4.40E-02			
PENRE	[MJ]	6.26E+00	8.63E-01	2.66E+00	1.22E-02	3.44E-02	6.95E-01			
PENRM	[MJ]	-	-	-	-	-	-			
PENRT	[MJ]	6.26E+00	8.63E-01	2.66E+00	1.22E-02	3.44E-02	6.95E-01			
SM	[kg]	0.00E+00	-	-	-	-	-			
RSF	[MJ]	7.00E-05	-	2.76E-05	1.11E-07	-	-			
NRSF	[MJ]	1.01E-03	-	3.07E-04	1.68E-06	-	-			
FW	[m³]	1.59E-03	1.75E-04	6.98E-04	5.74E-06	6.97E-06	1.07E-04			

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources; penke = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; penker = Total use of renewable primary energy excluding non-renewable primary energy resources used as raw materials; penker = Total use of non-renewable primary energy resources; SM= Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water

OUTPUT FLOWS AND WASTE CATEGORIES										
Parameter	Unit	A1-A3	A4	A5	B2	C2	C4			
HWD	[kg]	2.71E-06	1.10E-09	4.23E-07	3.36E-11	4.37E-11	1.33E-09			
NHWD	[kg]	2.02E-02	3.04E-05	5.45E-02	1.53E-04	1.21E-06	1.00E+00			
RWD	[kg]	1.80E-04	1.82E-06	3.32E-05	1.01E-06	7.23E-08	7.07E-06			
CRU	[kg]	1	1	ı	ı	ı	-			
MFR	[kg]	1	1	ı	ı	ı	-			
MER	[kg]	1	1	ı	ı	ı	-			
EEE	[MJ]	-	ı	ı	ı	ı	=			
EET	[MJ]	-	-	-	-	-	-			

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EET = Exported thermal energy

NORTH AMERICAN CEMENT GROUT FOR TILE INSTALLATION AS DEFINED BY ANSI A118.6 AND ANSI A118.7

According to ISO 14025

Contact Information

Study Commissioner

LATICRETE International, Inc. One LATICRETE Park North Bethany, CT 06524-3423, USA www.laticrete.com

LCA Practitioner

thinkstep, Inc. +1 (617) 247-4477 info@thinkstep.com http://www.thinkstep.com

